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ABSTRACT

Coded discrete frequency sequences can provide greatly improved

performance over conventional techniques when the fluctuation bandwidth

of the communication channel is a significant fraction of the transmis-

sion bandwidth. These fluctuations result from medium, equipment, and,

in the case of radar, random target variations.

The ability to reliably detect these sequences under f-equency

shift is investigated using a simple algorit7 to calculate an approxi-

mation to the true ambiguity function. This investigation leads to cer-

tain necessary conditions and a set of coupled equations which permit a

sequence to be synthesized from the ambiguity function approximation.

Errur rates for CFSK sequences are calculated and criteria for

optimizing the performance in rapidly fluctuating channels given. An

algorithm for constructing sets of orthogonal sequences with desirable

cross-ambiguity properties is developed and the performance of these

sets of orthogonal sequences compared with binary code alphabets.

Finally, consideration is given to digital and analog implementations

of the special receiver required for the CFSK sequences, error correction

coding problems associated with M-ary encoding, and acquisition behavior.
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Chapter I

INTRODUCTION

Because of the extreme ranges over which planetary radars and deep

space probes must operate, narrowband transmissions must be used to obtain

a suificiently large signal-to- noise ratio for reliable detection aad com-

munication. However, the propagation medium and equIpment instabilities

(as well as random target fluctuations in the radar case) may have a fluc-

tuation bandwidth which is a significant fraction of the transmission

bandwidth. By utilizing a discrete frequency transmission in which the

transmitter frequency is changed in a particular sequence at regular in-

tervals the ratio of transmission to fluctuation bandwidth may be signi-

ficantly reduced. These coded frequency-shift keyed (CFSK) sequences are

identical to discrete frequency codes currently used in large time-band-

width radars except that the waveform compression is performed after

detection rather than before.

In addition to increasing the ratio of transmission to fluctuation

bandwidth the codes provide diversity improvement as well as the ability

to greatly increase the information rate by M-ary rather than binary

encoding.

To provide a basis for later development Chapter II investigates the

causes and magnitudes of these fluctuations, the difficulty of estimating

and correcting for their effect, and special receivers for fluctuating

channels. It is concluded that correction of the effects caused by rapidly

fluctuating channels is not feasible.

Next, in Chapter III, in order to study the effects of uncorrected

doppler shift and mistuning on the detection of the sequence a simple

algorithm for rapidly calculating an approximation to the ambiguity func-

tion is derived. In addition, simple necessary conditions and a synthesis

procedure for obtaining codes from the ambiguity function approximation is

given.

1
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The CSFK sequences are compared in Chapter IV to standard modulation

techniques and optimized as a function of available power and fluctuation

bandwidth. It is shown that these optimized codes give acceptable error

performance in channels where coherent communication techniques would be

unusable. The algorithm for the ambiguity function approximation also is

useful for examining the mutual interference between sequences.

It is found that a set of orthogonal sequences with low mutual inter-

ference can be constructed by means of a simple algorithm and that this

set of orthogonal sequences may be used to greatly increase the informa-

tion rate by M-ary coding.

Chapter V considers digital and analog implementations of the CFSK

receiver as well as efficient error control and acquisitior 3ehavior.

The most significant results of this investigation are the response

lattice concept for representing CFSK sequence ambiguity functions and

the resulting algorithm for obtaining the response lattice directly from

the sequence, the necessary conditions and procedure for synthesizing

CFSK sequences from the response lattice, the conditions for minimizing

error rates for CFSK sequences used over fluctuating channels, and the

algorithm for synthesizing sets of orthogonal sequences with particular

cross-ambiguity properties.

Using these results it is shown that CFSK sequences can provide

considerable improvement over conventional techniques when communicating

over channels subject to rapid fluctuations.

fA

It
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Chapter II

DETECTION OF FLUCTUATING SIGNALS

2.1 Introduction

In a digital communications system utilizing a nontime-varying channel

it is always possible to decrease the bit error probability by increasing

the bit length. Although in many real communication links the parameters

of the link fluctuate with time, these fluctuations often are negligible

for data bandwidths much greater than the rate of fluctuation. However,

if the bit duration is increased to the point where the channel fluctuation

bandwidth is comparable to the data bandwidth, the error rate does not de-

crease as rapidly with an increase in bit length as for the time-invariant

channel. Ultimately, these time variations, rather than thermal noise, can

set a lower limit on the obtainable probability of error. The data rates

at which these fluctuations become appreciable will be called low data

rates. The region of low data rate is not well defined and depends in

detail on the transmitted waveform, the exact form of the channel fluctu-

ations, the probability of error desired, and the receiver implementation.

These same considerations occur in detection of radar targets at extreme

ranges.

2.2 Receivers for Fluctuating Signals

For purposes of describing the interaction of the channel fluctua-

tions with the transmitted waveform it is convenient to introduce the

two-frequency cross-correlation function and its two dimensional Fourier

transform, the channel scattering function. The two-frequency cross-

correlation function is obtained by transmitting two sinusoidal signals

spaced in frequency by Af. At the receiver one of the sinusoids is de-

layed relative to the other by a time AT and then cross-correlated with

the undelayed sinusoid. By varying AT and f the function can be

A determined. The correlation function is defined in terms of the complex

envelopes of the received scattered waveforms by

w(A,=f) Re f X(t)X*(t+A ) ei 2 vft -2v(6f+f)(&T+t) dt (2.1)

3



A section of R(Af,AT) along the Lf = 0 axis gives the correlation

between two points T sec apart on a transmitted sinusoid. The range of

AT where 9t(O,AT) is appreciable will set an upper limit on the interval

over which a signal may be coherently integrated in a matched filter.

Setting AT = 0 gives the spaced-frequency correlation function. The
range of Af for which 9R(Af,O) is appreciable gives the bandwidth over
which the frequency components of a transmission will remain coherent.

If the bandwidth of the transmission is too large then the channel will
severely distort the received waveform.

The Fourier transform of (Af,AT) is the channel scattering func-

tion a(r,f) which is the distribution in time and frequency that the

energy of a hypothetical transmitted impulse in time and frequency would
have after interacting with the channel. By integrating out T, the

channel power spectrum o(f), given by

c(f) =J o(T,f) dT , (2.2)_CO)

may be obtained from o(T,f). This function represents the spectrum of

a continuous sinusoidal transmission after interaction with the channel.

To show explicitly the interaction of the channel, an arbitrary

transmitted waveform u(t), and the receiver filter, it is useful to
2

introduce the ambiguity function xu (T,f) defined as (Price and Green

[1960])

X2 (,f) f u(t) u (t+T) exp(-j2nft) dt2 (2.3)
I-CO

2

The function )u (T,f) gives the square of the magnitude of the response

of a matched filter to a frequency translated input. If the filter is not

matched to u(t), but has an impulse response s(t), the square of the A

magnitude of the filter response to u(t), is given by the cross-ambiguity

function 2 (r,f) defined by

4
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2 ( = u(t) s (t + T) exp(-j2ft) dt (2.4)

The power out of the filter as a function of frequency and time transla-

tion for a matched filter is given by

PkT,f) =f f XL' - 'T, f - f') a(rt,f') dT' df' (2.5)

If the receiver filter is not matched to u(t), Xu (r,f) is replaced

by 2u (Tf).

us

The power for a given T and f displacement .s the volume under

the product of the ambiguity function (or cross-ambiguity function),

shifted by T and f, and the channel scattering function. This equa-

tion suggests that the way to-maximize the received power for a particular

T and f is to design 2 (or 2u) to have nearly the same shape as

O(r,f) in order to maximize the common volume. For instance, if the scat-

tering function is broader in the frequency dimension than the delay, a

transmitted waveform which has an ambiguity function broader in frequency

offset than in time delay by the same proportion will yield the largest

output power. However, this shape matching alone will not guarantee good

detectibility.

if X2 (Tf) (or X2 (T,f)) has appreciable extent along thef u (Tf o us

T-axis then the envelope and phase of the received waveform will fluctu-

ate over the bit time, because the frequency components of the received

waveform are decorrelated by the channel. Conversely, if the scattering

function has appreciable extent along the frequency axis, the envelope

and phase of the received waveform will fluctuate because segments ar-

riving at different times will be decorrelated.

The rate of fluctuation in relation to the bit length depends on

A the ratio of the scattering function extent in the frequency domain com-

pared to the extent of the ambiguity function in the time domain. If the

ratio is appreciable then the received waveform will be decorrelated with-

in a fraction of a bit time. This circumstance must be avoided if possible

because it makes coherent detection difficult.

5
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It will be shown below that despite matching of the ambiguity func-

tion shape to that of the scattering function, even the optimum receiver

(as defined below) will be degraded if the product of the RMS deviation

in delay and frequency of the scattering function approaches or exceeds

unity. However, there will still be a bit duration that minimizes the

degradation.

Price and Green analyzed the performance of various receiver imple-

mentations in terms of their relative probability of detecting the

presence of a signal under the condition of an equal false-alarm rate

(Neyman-Pearson criterion). They showed that when the received signal

and noise are sample functions from independent zero-mean gaussian ran-

dom processes and the noise is stationary and white with a one-sided

spectral density of N W/Hz, the optimum receiver computes a decision

variable which is a monotonic function of the likelihood ratio. This

decision variable is given by

T /2 T /2
0 0N 0 fD[W 01) = - f w0(t w0(t) F(t,t') dt dt'

0 2 _T/2-T/2 1

0 2 -0 ~ 0 '~

(2.6)

where wo(t) is the received signal plus uoise and the optimum processing

kernel F(t,t') is the solution of the integral equation

T/2 N2

0 2z (t 't ') + No 5(t-t')J F(t,t") dt' Oz(t,t")

TO  T(2.7)
2 tt' < 2

Here jz is the assumed known correlation function of the part of the

received signal representing the channel-distorted transmitted waveform.
Whenever the noise density is so great that it dominates the left side of

the above equation, it may be solved to give an approximation, F(t,t'),

to the optimum processing kernel F(tt'):

6
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F(t,t') (2.8)
N0

The decision variable computed by this approximate processor, D[w 0(t)],

is given by

T 0/2 T /2

DE(t) 0 U 0(t) M 0 (t') 0z(tt') dt dt' " (2.9)

The loss in detectability of Dbw (t) compared to the optimum proces-
0

sor D[w 0(t) is bounded by a function of the largest elgenvalue of the

correlation function Oz(t,t') and the noise density No . If X0 is

the largest solution to the equation

T0/2

0 (t't') Tk(t') dt' = (2.10)

)0/2

the signal power must be incrensed Ly at most the factor (1 +2XO IN) to

give equal detectability, and the cordition 2X/N << 1 is sufficient to

insure negligible difference In detectability. In addition, if all of

the positive eigenvalues of Eq. (2.10) are equal or if A0 is the only

eigenvalue, then the processor using z(t,t') hoe no loss at all com-

pared to the optimum processor, independent of the ratio 2 INO.
00

A special case of the processor defined by Eq. (2-9) is a coherent

receiver consisting only of a single linear filter followed by a sampler

and squarer where

z(t't') = g(t) g(t') (2.11)

& The sampler samples the filter output at its maximum value; the squarer

does not affect the probability of detection, but allows the coherent

receiver to be represented in the same mathematical form as the optimum

processor.

7



By defining the output signal-to-noise ratio as the increase in power

of the squared output when the signal is present compared to when the sig-

nal Is absent divided by the variance of the squared output when the sig-

nal is absent and assuming a symmetrical processing kernel, the output

signal-to-noise ratio is

T /2 T /2 T /2 T /2 dd'
R =2 f o[O(,t') K(t,t') dtdt'] K 2(t,t' dtdt' ]

/2 -T0/2 -T 0/2

(2.12)

It is interesting to compare the output SNR of coherent filter re-

ceiver and the receiver using the kernel z(t,t'). By Eq. (2.12) the SNR

of the coherent filter receiver is

T/2 T /2 2/ T /2 T /2

R 2 2 z(t,t') g(t) g(t') dtdtj/ f 0  g(t) g(t')dtdt' A

2-Lo/ /2 T /2

(2.13)

Using the Payleigh-Ritz inequality, RF has an upper bound given by

RF < 2( 0 /%), with equality occurring if g(t) = 40(t), where o(t)

is the eigenfunction associated with A0* For the more general SNR maxi-

mizing processor using K(t,t') application of the Schwartz inequality

shows that the SNR is upper bounded by

TO/2 TO/2 '

fR <2 0  2(tt') dt dt' = 2 =R (2.14)-- To/ max

0 0 k=O

with equality whenever K(t,t') is proportional to pz(t,t'). Thus the

ratio of the maximum SNR for coherent filter processing to the maximum

SNR for a processing kernel equal to the correlation function z (t,t')
is

is

.t8



R/R ,a= 20= 1 + " 2/\2 > (2.15)maFmax k 4

k=O k=l

Thus, unless ?0 is unique, the output SNR of the coherent filter re-

ceiver will always be smaller than that of the processor with a kernel

0z(t,t'). Also, as long as 2\0IN0  is much less than unity, output SNR

is a good indication of the relative ability of processors to detect a

signal (Price, 1965).

The following hierarchy of processor output SNR shows the relative

performance of coherent filter processors, correlation function matched
- 2

processors and the ultimate upper bound on SNR, 2(E/N )

kO ("k
RFmx= 2 (-N) R RD ma 2 <(' ) =2(j). (2.16)

From the above expression, the ultimate upper bound 
on SNR of 2(E/No)2

can be obtained with a coherent processor only if N0 and its associated

eigenfunction arc unique. In this case the two receivers are equivalent.

If there are two or more eigenvalues, then the available signal energy is

distributed among the multiple elgenfunctions, causing the coherent-filter

squarer to be inferior to the processor matched to the correlation func-

tion, which, in turn, no longer achieves the upper bound of 2(E/N0 ) 2 for

SNR.

It is instructive to consider the eigenfunctions for a particular

channel autocorrelation function given by

R(At,Af) = re- 2iBAt (2.17)

(where B is the fading bandwidth and r0  is the average power) which
A

corresponds to a scattering function

oa(,f)= ((Br /n)/(B2 + f 5) (2.18).

9
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The eigenvalues of this correlation function, for BT <« 1, are

[l 2flBT] r0T =[ _I (2.19).,0 3,0

and,

k [4iBT/k2i 2] r0T k = 1, 2, (2.20)

* Since this is a lowpass autocorrelation function, to calculate the eigen-

values for a fluctuating phase, narrowband signal which has two orthogonal

eigenfunctions associated with each eigenvalue, the eigenvalues calculated

above must be divided by a factor of 2. Therefore, for a channel with an

exponential fading spectrum, the largest eigenvalue, for small values of

BT, is given by

= NO/2= + (21r) 1rT . (2.21)

Since the output SNR for the coherent filter processor, RF, is bounded

by

~2r 2  2 2
S _ - - (22) [T 0o T 2

1 2

_ - (E /N0) (2.22)
2 zO

where E is the average received signal energy, the ratio of output SNRz

for the two detectors is

R 2 (/N0) 2 C
1= 1 [ + 1BT/3C"  qRF  2(X/N0)?  2 Tk_,]-- [2BT/k2 I T << 1

0 0 Ok=l k=l

(2.23)

10



The above expression shows that for non-zero BT the SNR optimizing

processor will do better than the matched filter. For small values of

BT (BT << 1), however, there will be little degradation in SNR from

using the matched filter processor.

2.3 The Optimum Detector for Partially Coherent Communication

A communications link operating over a time-varying channel must

estimate the phase of the received signal in the presence of both addi-

tive and (for a channel with negligible multipath) multiplicative noise.

If a phase lock loop is used to derive an estimate of the signal phase

from the arrier, pilot tone, or virtual carrier, the estimate will dif-

fer from the true phase because of the noise, causing a detaction loss.

The optimum receiver must account for the variance of the phase error.

Viterbi (1966J gives the exact probability density for the phase error,

, of a first order phase-lock-loop as

p(O) = exp(a cos 0)/2I0 (a) (2.24)

where a is the signal-to-noise ratio in the loop bandwidth. The opti-

mum detector for equiprobable, equal energy s'nals (in a maximum pos-

terior-probability sense) is shown in Fig. (2.1), where yis and yic

are estimates of the in-phase and quadrature components of the two pos-

sible signals S.,i = 0,1. This detector reduces to a coherent detector
1

when a is large and to an envelope correlation detector when a is

small. For a nontime-varying channel, a depends only on thermal noise.

However, if the carrier is frequency modulated as a result of multiplica-

tive fading or oscillator instability then the effective loop SNR, a',

will be decreased to a' + 0fJ , where of is the mean-square error

caused by the inability of a narrow loop to track the rapidly (compared

to the loop bandwidth) varying carrier. Generally, of will be a de-
-1

creasing function of the loop bandwidth, whereas a will increase with

the loop bandwidth. Thus, for a given amount of frequency spreading and

additive noise density, there is an optimum loop bandwidth that will

minimize the total niean-square phase error. However, if this mean-square

phase error is on the order of 0.25 rad2 or greater, the optimum detector

11



I
if 

T

.1

YOl 
Is if 2oD0 0,1

0, if <OJ

Yoc >- -

Fig. 2.1. MAXIMUM POSTERIOR PROBABILITY DETECTOR FOR EQUAL ENERGY,

EQUIPROBABLE BINARY SIGNALS. (Adapted from Viterbi (1966] .)

will be closely approximated by an envelope correlation detector. The

situation where both frequency 
instability and therm~l noise 

are simul-

taneously present contrasts with the usual circumstance where the data

bandwidth is much greater than the fluctuation bandwidth of the carrier

or pilot tone. In the latter circumstance the bandwidth of the phase-

lock-loop can be sufficiently narrow that a good phase reference is ob-

1tained. Conversely, if the fluctuation bandwidth is on the order of the

data bandwidth, it will be impossible to obtain a good phase reference.

Viterbi showed that because of the inability to obtain good phase esti-

mates, for binary probabilities of error on the order of 10 to 10

incoherent FSK is superior to coherent PSK for values of a' less than

about 5.

Since a' is proportional to the total RMS phase error, phase

fluctuations originating in the transmission medium and short-term oscil-

lator instability can severely degrade receiver performance even when the

I thermal noise is relatively low.

12



IK 1
2,4 Sources and Characterization of Fluctuations

The fluctuations experienced by a signal can be attributed to one

of two causes: fluctuations originating in the medium and fluctuations

originating in the transmitting and receiving equipment.

2.4.1 Fluctuations in the Medium

An electromagnetic wave at a frequency much greater than the critical

frequency propagating through an electron gas requires an amount of time

T, where (Evans and Hagfors [1968], p. 113)

22 
22

=- -dr .(2,25)

If Ne 2/gmf2 << 1, then, using the binomial theorem,

f - 1 + dr . (2.26)

The increase in propagation time over the free 3pace value is

A l f R Ne 2 dr . (2.27)

0 r mf

As long as the total integrated electron density of the propagation

path is not a function of time the received signal will not fluctuate.

However, if the electron density does change the variation in delay will

be observed as doppler shifting of the received signal. Since, for a de-

lay increase of AT the phase path has been increased by an amount 6p,

where

R 2
e2  dr (2.28)

13
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the doppler shift M of the received signal will be

2 Rf (e) N dr (2.29)

-dt 2 cmf dt

If the integrated electron density changes irregularly the received signal

will be broadened in frequency. This broadening may be represented as an

increase in the frequency extent of the channel scattering function.

Usually electron density fluctuations can be neglected, but when the

phase path is very long and the data bandwidth is small, as it would be

in the case of an interplanetary probe or a planetary lander, even rela-

tively small density variations can have an appreciable effect on error

rates. Whenever a number of independently varying irregularities exist

along the phase path the RMS variation is the square root of the sum of

the mean-squared frequency variation contributed by each irregularity,

i.e.,

2 n_ [ r +6 2

Ar [(f 2]- e > d (2.30)

1r

where r is the distance to the "Y"th irregularity, iA is the effec-

tive size, and n is the number of independently fluctuating irregular-

ities. Assuming the phase path may be represented by n contiguous

fluctuation cells all with effective length A =L and identical fluc-

tuation statistics, Eq. (2.30) can be written

2 2 /2

e 2f( dt f
,, 2mcf,,R/A f t  dr (2.31)

If N is approximately constant over a fluctuation "cell," then

'1 2
e Jd,

Z rms 21rmcf Vdt (2.32)
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The expression in Eq. (2.32) applies to the effects of the earth's

ionosphere as well as those of the interplanetary plasma. For transmit-

ters close to the earth variations originating in the ionosphere will be

the major contributors to frequency spreading, but over distances many

times the earth's radius the tenuous interplanetary plasma can also have

an ap,reciable contribution.

If a probe should pass behind the sun the solar corona cnn have a

major effect. Shapiro [1964] estimated the increase in time delay for a

raypath passing near the sun at a distance r solar radii to be

1.47 X1042 sec2 . (2.33)

Then, the rms frequency spreading is approximated by

,2

Af r t(2.34)

The turbulence of the solar corona suggests that AT could vary quite

rapidly.. Assuming that AT can vary as much as 0.1 percent in a second,

Af 1.47 X 1011rin frHz .(2.35)rms fr

Even for a frequency of several GHz and paths where r < 10 the frequency

spreading could exceed 5 Hz. This amount of spreading would be catastrophic

for a system with a data bandwidth of only a few cycles.

Frequency spreads of this magnitude were reported for Mariner IV paths

which passed through the corona [Goldstein, et al, 1967].

2.4.2 Fluctuations Originating in the Transmitter and Receiver

A major source of short-term instabilities which originate in equip-

ment is lack of short-term stability of oscillators used for frequency

15



generation and translation. If an oscillator spectrum is examined with a

high resolution spectrum analyzer, the spectrum consists of a narrow peak

which decreases rapidly as 1/f or 1/f2  as regions separated by f Hz

I from the nominal center frequency are examined until a plateau of uniform

noise is reached. The 1/f 2  (or 1/f) dependency is the result of phase

modulation by noise originating in the oscillator itself, such as /f

transistor noise and thermal noise. Power supply ripple and external

i signals coupling into the oscillator circuitry can also produce phase mod-

ulation, although these sources usually produce modulation components at
specific frequencies. The finite-width spectrum of the nonideal oscilla-

tor means that over a time 1/Af, where f is the half-power line

width, the oscillator phase will wander approximately one radian. If

n/if is comparable to (or greater than) the bit length, and this noisy

I oscillator is used to frequency translate an otherwise nonfluctuating sig-

nal, coherent addition in the data filter of signal energy representing

different parts of the pulse will not occur, and the signal-to-noise ratio

from a matched filter detector will be degraded unless phase estimation

and correction is performed prior to detection. As has been previously

discussed, when the fluctuation spectrum is order of the data band-

width, any phase estimate derived from the noisy, rapidly fluctuating sig-

nal may be so poor that adequate phase correction is impossible.

The spectral purity of oscillators used for frequency generation and

translation in spacecraft can be improved by phase-lockng to a highly

estable carrier transmitted by the tracking station; however, at o atoa

rates both ihe medium and instabilities of the phase-lock-loop VCO will
limit the accuracy cr the phase-locking Fluctuations in the medium cause

wrequency spreading of the stable carrier; any frequency source phase-

locked to this received carrier will have the same frequency fluctuations.

Even if the medium were perfectly stable and the effects of thermal noise

could be neglected it would still be impossible to achieve perfect phase-

lock because of noise in the voltage controlled oscillator being locked

to the stable carrier. This noise causes phase modulation of the VCO

spectrum; however, as long as the bandwidth of the tracking loop is large

compared to the width of the VCO spectrum, the phase noise will be nulled

16



out by the feedback and the VCO spectrum will be pure. The mean-square

loop phase error which results from the VCO phase noise is

eL  f (w) 11 - H()2 (2.36)
0

where y(w) is the one-sided spectral density of the oscillator phase

noise in (rad)2/Hz and H(M) is the closed loop transfer function. If

the carrier strength is so weak that a narrow loop bandwidth is required

to exclude thermal noise, then it can happen that an appreciable portion

of the VCO spectrum extends beyond the loop bandwidth. In this case only

the low frequency components of the phase modulation are removed and the

high frequency components cause the derived carrier phase to rapidly

fluctuate. Even when small these fluctuations can degrade coherent de-

tection and, if large enough, can cause a tracking loop to skip cycles.

Whenever this is the case either the loop bandwidth must be increased or

the VCO stability must be improved.

Unfortunately, increasing loop bandwidth increases the phase error

of thermal noise origin and improving the VCO stability is often not

feasible because of power and weight considerations or tracking range re-

quirements (which might mean that a VCXO could not be used).

One more consideration which aggravates the problem of achieving a

pure spectrum is that frequency multiplication, often required to gen-

erate stable frequencies in the microwave region, causes sideband phase

noise power to increase as the square of the multiplication factor. The

resulting phase noise increase can cause an oscillator which might be

satisfactory at a lower frequency to become unsuitable when nultiplied.

In addition to instabilities which originate in oscillators, another

source of instability is the path lergth variations caused by mechanical

antenna vibration. For the microwave frequencies used for space communi-

cation even relatively small mechanical movements can cause significant

frequency spreading, particularly if they are rapid. If the movement is

b sin w t, then the frequency spreading is

a"

17!
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j = - (i) A 2 i sin w 2a= acos (at (2.37)

Assuming a vibrational movement to wavelength ratio o! 0.01 and a vibra-

tional frequency of 1 Hz, the rms frequency deviation is

Af rms  a _ 0.28 Hz

For data bandwidths on the order of 1 Hz this amount of frequency spread-

ing would be significant.

The value of b/? postulated would, for ? = 10 cm, correspond to

a movement of only 1 mm. Motions of this magnitude could occur in an-

tennas carried by planetary landers if buffeted by high winds or in

large receiving antennas on the earth.

Thus for data bandwidths on the order of 1 Hz phase fluctuations of

various origins such as the medium, oscillator instability, thermal noise,

and mechanical vibration can combine tG produce enough frequency spread-

ing that phase coherence over a bit !ength is not, and cannot, be ob-

tained. For this reason techniques using shorter pulses and incoherent

detection, even though sub-optimal in more stable communication links,

become attractive.
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Chapter III

CODED FREQUENCY SHIFT KEYED SEQUENCES

3.1 Introduction to Coded Frequency Sequences

In Chapter II a number of sources of frequency spreading with magni-

tudes on the order of 0.01 Hz to 1 Hz were identified and their degrading

effects investigated. A primary cause of degradation was found to be the

lack of coherence over a bit length. This observation suggests that if

the length of the bit could be made shorter, coherence could be obtained.

However, if the transmitter is power limited, decreasing the bit length

will reduce the received energy per bit and hence the detectibility. One

way out of this dilemma is to sample the envelope of the received signal

at intervals approximately equal to the coherence time (assumed to be less

than the bit length). This technique will give approximately independent

samples of signal plus noise which can be added to arrive at the decision

variable. In this technique the receiver essentially becomes a weighted

radiometer.

These independent envelope samples could just as well have been ob-

tained by stepping the transmitter at intervals between M frequencies

whose spacing is a multiple of the reciprocal of the bit duration. An

example of such a frequency shift keyed sequence is shown in Fig. 3.1.

As long as the subpulse duration is short compared to the coherence time

the signal energy will be approximately coherent over the subpulse.

3.2 CFSK Sequences

Systems using binary phase or frequency shift keying are common in

both radar and communications. In these systems a binary sequence mod-

ulates the carrier amplitude, phase, and frequency in discrete increments.

In general, the transmitted waveform produced by discrete modulation can

be represented in complex notation (Cook and Bernfield (19671)

(t)= a iE (t) exp[j(w 0 + W ) t + el)] (3.1)

i=l
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where

E.(t) =1, (1 - 1) < t < ib

= 0, t > i or t < (i - 1) 5

and iz, Wi, and ei are the amplitude, radian frequency, and phase,

respectively, associated with the envelope E (t). For a binary PSK

communication system, ai is constant, wi = 0, and ei = ±n/2 de-

pending on whether a 1 or 0 was transmitted. For a binary FSK system

e and a are constant and wi = I or w2P representing a trans-

mitted 1 or 0. These binary systems can be generalized by allowing the

phase or frequency to have M discrete values instead of only two. Such

an M-ary communication system can transmit log2 M bits/symbol instead

of the one bit/symbol of a binary system. In an M-ary FSK system recep-

tion of w is taken to mean that the message symbol Si corresponding

to Wi was transmitted, since each symbol is associated with a unique

frequency.

20
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There is also the possibility of associating a unique sequenct 02

of transmitted frequencies with each message symbol, where the sequence

n nl n2 nL) (3.2)

represents a frequency shift keyed sequence with radian frequencies Wni"

if there are L available transmitter frequencies they can be ordered

without replacement into L! sequences. Each of these L! sequences

can be associated with a message symbol S such that
i

L
S= .E. (t) exp[j((wO + Wii) t + e)]

i=1

L L

S 2 : V/2(t) = Ei(t) explj(( 0 + W 2 1) t + e0]

A i=l

L

S :4i(t) = \ a Ei(t) exp[j{(2 + W) t + ei] (3.3)
n n 0 ni i

i=l

where a and e are constants and w is the ith element of the
i i n

frequency sequence n

3.3 Matched Filter for CFSK Sequences

3.3.1 Coherent and Non-coherent Matched Filter

It is well known that for a non-spread channel the signal-to-noise

maximizing processor is a filter matched to the transmitted waveform in

21
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the sense that, if n(t) is the transmitted waveform, the impulse

response of the filter h(t) is

h(t) = **(-t) (3.4)

For the frequency sequences of Section 2.2 the matched filter may

be implemented as a parallel bank of filters, each matched to a partic-

ular subpulse b (t) of *n(t), where

b t) = P(t) exp[j(( 0 + w.) t + ei], (3.5)

and an 1 0 < t < 5

p(t) 0 otherwise

Each matched filter is followed by a time delay to bring the subpulses

into synchronism. The time delay will depend on the particular frequency

sequence Qn . If wk is the kth element of 02 then the filter matched

to b i(t) must be followed by a delay of (L - k + 1) 8 = Tni, where L

is the number of frequencies in the sequence. These delays are necessary

to permit coherent addition of the subpulses. After coherent addition,

the resulting waveform is detected to yield the decision variable for

*n (t). Figure 3.2 illustrates one possible implementation of a coherent

nnmatched filter ijn(t). Implementation of the coherent matched filter

requires that the time delays be correct to within a small fraction of

the carrier period to permit coherent summation. Fluctuation of the

channel will adversely affect the subpulse-to-subpulse coherence, with

the result that coherent summation is not feasible. Under these circum-

stances non-coherent summation obtained by following each delay with an

envelope squarer and summing the envelopes will be necessary. Figure 3.3

shows the implementation for non-coherent detection of n t). The two

implementations are not equivalent: envelope summation reduces the CFSK

sequence time-bandwidth product from L2 obtained with coherent summa-

tion to just L.
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The processors of Figs. 3.2 and 3.3 can also be implemented as

taps on a single delay line.

3.3.2 Coherent Ambiguity Function

The coherent ambiguity function IXn(O)I represents the envelope

as a functicn of delay of a matched filter output when the waveform to

which to which the filter is matched is displaced in frequency by an

amount 0.

If the terms in n (t) representing the frequency modulation are

included in the envelope term so that Eq. (3.1) becomes

I Xn(t) = ( [ciE 1(t) exp{j(wit) + e.,] exp(j t)
i=l

L

exp(jw 0t) \ u(t) , (3.6)

i=1

then the ambiguity function for n (t) is

IX4 n(T,0)l = f 4n(t) *(t + T) exp(2vot) dt[

lexp(-jw 0 T) * uiMt L u*(t + T) exp(2ggt) dt

i=l m~l

(3.7)

Taking the envelope of _(T'0) eliminates the fine structure contri-

buted by the carrier frequency term so that Eq. (3.7) becomes

Y,4 Ix r ,0)L u M 3it (t + ~)exp(21r~t) d 38
i=1 m=l
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Since the response to an input ui (t) of a filter matched to a particu-

lar subpulse u (t) as a function of frequency offset and delay is

_ u u(t) u*(t + T) exp(27vot) dt :Xu~( ATi, - mn (3.9)

1

where ATim - m) 5 and 6im,n = W2i (ni - the coherent

ambiguity function for *n (t) can be expressed ti a double sum of time

and frequency shifted replicas of the function Xu,n(T,0) (where the

envelope is obtained after summation):

L L

Ix >1 X O i -AT ~ n (3.10)

Figures 3.4 and 3.5 give the coherent ambiguity function for the

sequences (f3 f5 ff 4 f2 f6 ) and (flf 2 f3 f4f5 f6), respectively, whereL.(ffff = f +nn - 1

fn 1 T

The response shown in Fig. 3.4 is an example of a "thumbtack" ambiguity

function (see Section 3.6).

3.3.3 Ambiguity Functions for Non-coherent Detection

If the filter outputs are envelope detected before being summed,

then the ambiguity function for xn(t) no longer has the form of Eq.

(3.10). Under these circumstances the envelope of the response of the

mth filter to Mn(t) is

X~ n(T, ) = j ui(t) u*(t + t) exp(21rft) dt

X u ~ (- AT im, W im (3.11)

i21
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Summation of these envelopes gives the non-coherent ambiguity function
for the sequence 4n(t):

n

L( ,) xu  (T,O)
X(n m, n

1 un( ' - im' 0 ' im,n) " (3.12)

m=1 i=1

Since I. (n(T,"0) =: n(r)' the non-coherent ambiguity function
l 4n'  )  

nS

n

1 L iL-

Cx (,0) = Xu,n - AT im, Oim,n)
TnI

m=l i=1

3.3.4 Envelope Ambiguity Functioi.

Applying the inequality

n nai< J a i  (3.14)

to Eq. (3.13) for the non-coherent ambiguity function producea an upper

bound:

n = -C0'im, 0-Aim,n)
m=l i=1

I Xu,nU AimI 'im,n) (3.15)

m=I i=2
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This upper bound will be defined as the envelope ambiguity function

n associated with the waveform *t (t). The envelope ambiguity

function is obtained by summing the subpulse ambiguity functions shifted

in delay and frequency.

Since, by application of the inequality in Eq. (3.14) the non-

coherent ambiguity function upper bounds the coherent ambiguity function,

the following sehuence of inequalities results:

m=1 il l ( , )

L L

m=n

L Li

j X,,'(' - &im' 0- £im,n) = wn"0 )  (3.16)

m=l

As long as there is negligible overlap of the time and frequency shifted

ambiguity functions, the envelope ambiguity function will be a tight upper

bound on the non-coherent ambiguity function. Figures 3.6 through 3.9 are
the calculated non-coherent and envelope ambiguity function for two dif-

ferent CFSK sequences. Because of the non-coherent summation, the central

peak is broader than for coherent summation.

3.3.5 The Response Lattice

The video ambiguity function can be written as a two-dimensional

convolution of the subpulse ambiguity function envelope with a two-

dimensional delta function lattice by expanding the envelope ambiguity

function as

L L
5 n(T20) = c~n(T0)j I* I' - im"0  4im ) (3.17)

m=1 m=l
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The term containing the double summation of delta functions is defined to

be the response lattice. Since 5(n,0) is a sum of real-valued terms,

it also is real.

For the uniform pulse trains considered so far,

A~im = (i- m) 8 (3.18)

and

=-(Wn (3.19)
60im,n 211 ni r nm

By normalizing with respect to the subpulse length 5, Eq. (3.17) can be

written as

L L

n ,(15 '0 )=IXu, n 9L1 
') *d ~ 8 ~ i) 08- (?'nj - 7i)

m=1 i=1
(3.20)

where

(W b 1
7 ni = ni It•

2v
If 'ni+1 - Wni - P whe-e P is an integer, then

Pn = (Y n ... nL) (3.21)

will be a sequence of integers representing the frequency modulation

normalized with respect to 1/b. If the w n, are further restricted to

the band of frequencies

(d + - <w< -- Lw
0 8 - ni2-<\ 810 +w

then " will be an ordered sequence of the integers (1,2,3,...,L).
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Changing the sequence order will change the response lattice and the

transmitter waveform. However, because of the relationship between the

ambiguity function (coherent or non-coherent) and the response lattice,

inspection of the effects of sequence order rearrangement on the response

lattice will permit the new ambiguity function to be quickly bounded.

The facility with which the response lattice can be calculated can be cal-

culated will permit very rapid examination of the gross characteristics of

the amaiguity function, particularly regions in the T,O plane where iso-

lated peaks of ambiguity can occur. After promising sequences are found

using the response lattice, the coherent or non-coherent ambiguity function

can be calculated in detail.

The response lattice also will be useful aid in the synthesis of de-

sirable ambiguity functions.

3.4 Calculation of the Response Lattice from the Normalized CFSK Sequence

This section develops a simple algorithm for computing the response

lattice directly from the normalized CFSK sequence, f . This algorithm

will also provide insight for the derivation of certain fundamental prop-

erties of the response lattice which restrict the distribution of ambiguity

in the delay-doppler plane.

If 11 is shifted upward by an amount Aw= 5 - where k is an

integer, then r(k) the normalized frequency shifted sequence is given

by

1(k) = 1+k Y2 + k ... Y +k (3.22)

Thus, under frequency shift some of the elements of r(k ) will appear' n

identical to some of the elements of r . Since the normalized delay be-

tween two elements of rn , ys and 7 n+s , such that yn+s - 7s = k, is

simply equal to n, a normalized frequency shift of k will result in

the signal energy corresponding to Ys appearing at the output of the

matched filter delayed by an amount nb.

This relationship between the sequence of frequencies f2 and then

time-frequency normalized sequence r suggests a simple algorithm for
n
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computing the response lattice directly from rn. Let dij represent
n i

the normalized delay n between y = j  and some element y such
k k+n

that yk+n i + j (i assumed positive). Defining the distance be-

tween all possible pairs such that i is positive as above and arranging

the d in an array where the ith row of the array represents the nor-ij
maliLed delays between all elements with a normalized frequency spacing

of i gives the information required to construct the response lattice

by inspection. This is done by interpreting the value of each dij as

the number of units of 8 from the zero-delay axis and i as the number

of units of 1/5 from the zero-doppler axis where the energy of a single

frequency shifted (by an amount i/6) subpulse will be found. Thus,

there is a simple, direct relationship between the normalized frequency

sequence and the response lattice, which in turn is directly related via

a two-dimensional convolution to the distribution of ambiguity in the

delay-doppler plane.

For example, the sequence 325164 has a d.. array given by

-2 -1 5 -3 2

-3 4 2 -1

(dij 3 2 51 64  2 1 4 (3.23)

-1 3

1

Examination of this array shows that for a doppler shift of 1/8 there

will be delta functions at delays of -25, -5, 58, -35, and 25 located

1/8 from the zero-doppler axis. Similarly for a doppler shift of 2/5

there will be delta functions at delays of -38, 48, 28, and -8 lo-

cated 2/5 from the zero-doppler axis. The remainder of the off-doppler

responses are found in the same manner. Figure 3.10 shows the complete

response lattice for this sequence. Since the response lattice is skew-

symmetric, only the upper-half-plane, corresponding to positive doppler

shifts, need be calculated.

At this point, it is not at all obvious what effect reordering a

particular sequence will have on the response lattice without actually

33
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calculating the dj array. The next section will develop a simple re-

lationship between operations on a sequence and operations on the response

lattice.

3.5 Simple Operations on CFSK Sequences and Corresponding Effects on

the Response Lattice

The response lattice may be derived directly from the dj array as

was done in Section 3.4, or may be obtained by the alternate method out-

~i .1lined below.
]As the first step in this alternate calculation the sequence r n is

4 transformed into a unitary M x M matrix F where the Kth column is re-

lated to yKby

1 if and only if j =M +l1s, where K

fJK ,0 otherwise (3.24)
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The F matrix can be interpreted as a two-dimensional representation in

time and frequency of the normalized CFSK sequence. Thus, for the se-

quence

r n= Cl7 72 -... 6) (3 2 51 64)

the corresponding F matrix is

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

F325164 = 1 0 0 0 0 0 (3.25)

0 1 0 0 0 0

o 0 0 1 0 0

(K) (K)
By defining the F matrix corresponding to r(, the frequency shifteun

sequence, as F K) where F K) is the F matrix with the last

K(K < M -1) rows removed, it follows that

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

F = (3.26)
1 0 0 0 0 0

0 1 0 0 0 0

(K) (K)
The remainder of the F are similarly defined. If these F are

now considered to just be ordered arrays in the delay-doppler plane and

if each of these arrays are shifted to the left or right until the l's

in the last remaining row are aligned with the I in the last row of the

F array, then the number of ones occupying each cell of the resulting

array will be the strength of the corresponding impulse of the response

lattice, as shown in Fig. 3.11.
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0 0 0 0 1 0

0 0 1 0 0 0

F arz0 0 0 0 0 1

F- matri% : :1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

F -matrix: 0 0 0 0 0

1 0 0 0 0 0

01 1 0 0 0 0
0 0 0 0 1 0

F (2)mtrix: 0 0 1 0 0 0

0 0 0 0 0 
.. i1 0 0 0 0 0

0 0 0 0 1 0
F 5- -- ma trix: 0 0 1 0 0 0

0 0 0 0 0 1

F 4 ) _ matrix 0 0 0 0 1 0

0 0 1 0 0 0

F (5) - matrix: 0 0 0 0 1 0

Note: Underlined numbers represent r, sponses at the origin.

Fig. 3.11. DERiVATION OF THE RESPONSE LATTICE FROM
THE F-MATRIX r = (325164)

Obtaining the response lattice in this way brings out an interesting

featuire of the F matrix: any rotation and/or time-reversal of the F

matrix will result in a corresponding rotation and/or time-reversal of
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the response lattice. Since the F matrix uLiquely defines a sequence,

each of these operations on the F matrix yields a new (but not neces-

sarily unique) sequence. In general, up to eight unique sequences may

be derived from the eight possible rotations and/or mirror images of the

F matrix. These eight sequences, the response lattice, and the F

matri ?s are shown for the sequence (325164) in Fig. 3.12.
I .

From Fig. 3.12 it can be seen that every sequence in the group can

be derived from any one initial sequence by a simple rotation and/or

transposition of the F matrix. This relationship is shown in detail

by Table 3.1 for the sequence (325164).

It is also possible to obtain the other sequences in a particular

group by operating directly on the sequences without having to go through

the operations on the F matrix.

First, the time-reverse sequence corresponding to a given sequence

will be defined as the sequence obtained by reversing to element order of

the original sequence, and the complementary sequence will be the (M +)'s

complement of the elements in the sequence. In addition to these two

elementary operations, a new sequence may also be constructed from the de-

lays given each frequency; this sequence will be called the delay sequence.

Of course, all three or any combination of these operations can be per-

formed sequentially on a given sequence. Thus, there are seven additional

sequences that can be obtaiied by performing or not performing each of the

above operations. Table 3.2 illustrates this interrelationship between

the sequences and the elementary operations. Table 3.2 is similar to 3.1

except that the former is the transformation to be performed on the F-

matrix corresponding to a particular sequence, while Table 3.2 gives the

operations to be performed on the sequences themselves. By comparing 1 ,"

Tables 3.1 and 3.2 it can be seen that each transformation of the F-matrix

is representable by corresponding operations on the sequence. Reference

to Fig. 3.13, which shows the eight possible orientations of the F-matrix 4
and the associated effects on the orientation of the response lattice,

gives the information necessary to relate operations on the sequence.

transformations on the F-matrix, and the corresponding effects on the re-

sponse lattic2 of these operations. These relationships are summarized 0
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Fig. 3.13. RESPONSE LATTICE FOR SEQUENCE SYNTHESIS
EXAMPLE.

in Table 3.3. Several interesting properties are obvious from Table 3.3:

first, there are only four distinct response lattices associated with the

eight possible sequences; and second, two sequences which are the time-

reverse complements of each other have identical response lattices.

Furthermore, the operations on the F-matrix which result in identical

response lattices also fall into four pairs of opposite operations: the

left-transpose, right-transpose pair; the ±900 rotation pair, the 900

rotation followed by a left- or right-transpose pair, and the no-operation,

left-transpose-followed-by-a-right-transpose pair.

I
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Table 3.3

CORRESPONDENCE BETWEEN OPERATIONS ON THE F-MATRIX, THE SEQUENCE,
AND THE RESPONSE LATTICE

Operation Operation Effect on
on F-Matrix on Sequence Response Lattice

LT time reversal, 900 rotation

RT T, TR, C time reversal, 900 rotation

LT, RT TR, C no effect

+900 r, TR 900 rotation

-900 T, C 90" rotation

+900, RT TR time reversal

+900, LT C time reversal

no operation no operation no effect

The properties permit the problem of manipulating the response

lattice to be transformed into the much simpler problem of operation on

either the F-matrix or the sequence.

In the next section a class of sr-uences with a particular desirable

property will be analyzed using these techniques.

3.6 Response Lattices with the "Thumbtack" Property

In Section 3.5 analysis of relationship between manipulation of the

F-matrix and the corresponding effects on the response lattice showed that

every sequence has up to seven companion sequences which may be easily de-

rived from the first sequence. In this section these relationships will

be used to classify into groups all sequences of length 6 which have a

"thumbtack" response lattice.

A "thumbtack" response lattice has the property that for a sequence

of length M the impulse at T =0, 0= 0 has strength M and every
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other impulse located elsewhere in the T - 0 plane has a strength of I
exactly one. Such a response lattice would be useful in a radar system

where both delay and frequency shift must be simultaneously estimated or

in a communication system where estimation of doppler shift is required

to permit frequency tracking.

The "thumbtack" sequences are interesting because there is a simple

necessary and sufficient cond.ttion for a particular sequence to have a

"thumbtack" response lattice. This condition follows directly from the

representation of the response lattice as a superposition of the frequency-

shifted arrays corresponding to a particular sequence and the requirement

that none of the elements of the shifted arrays coincide (if they did, the

response lattice would have some lattice points with strengths greater

than one). From the earlier discussion of construction of the response

lattice from the frequency-shifted arrays F(J )  it can be seen that if

the distance between each 1 in the F-matrix and all l's with smaller col-

umn numbers is represented as a two-tuple, where the first number is the

difference in row number and the second is the difference in column num-

ber, a necessary and sufficient condition for a F-matrix to correspond to

a "thumbtack" response function is that all of the two-tuples be distinct.

If any of the two-tuples are not distinct, there will be a combination of

frequency shift and time delay that will cause those lattice points to

coincide. By the same reasoning, if two or more lattice points coincide,

then two or more of the two-tuples are not distinct.

If the two-tuples are distinct then the other sequences derived by

transformation of the F-matrix will also have the "thumbtack" property

since the corresponding response lattices are just rotations and/or time-

reversals of the original.

In practice, however, it is both easier and more informative to cal-

culate the dij array, which gives explicitly the position of each point

of the response lattice. By exhaustive calculation of the d array

corresponding to each of the 6! = 720 sequences of length 6, all 116

distinct possible "thumbtack" sequences may be found. Each of these se-

quences can then be classified into one of seventeen groups of at most
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eight distinct sequences by the methods of the previous section. T'able 3.4

is a listing of these "thumbtack" sequences. Because some sequences are

transformed into themselves by these operations not all of the groups have

the maximum of eight distinct sequences.

3.7 Some Necessary Conditions on the Response Lattice for Realizable
Sequences

Although, as in Section 3.5, sequences with partizular properties may

be found by exhaustive search of all possible sequences of a given length,

there is no guarantee that for sufficiently restrictive constraints any

sequences which satisfy the constraints can be found. If this is the case

it must be concluded that either the constraints are such that no sequences

of any length can satisfy these constraints and that the search be ter-

minated or that sequences of greater length which have not been examined

might contain a sequence which satisfies the constraints. This trial-and-

error approach to waveform design, even though aided by the algorithms

developed fn Section 3.4, is thus not satisfactory. Thus it is appro-

priate to consider non-realizable sequences. In this section the d.. ar-

ray introduced in Section 3.4 will be the central topic. By analyzing

this array a number of necessary conditions for a particular response lat-

tice to represent a realizable sequence will be found. Although not

sufficient, these conditions are sufficiently restrictive to be useful in

the waveform synthesis problem.

Several relatively simple necessary conditions follow directly from

the delinition of the sequeuce r . Since, if a sequence has M elements,
n

there will be a particular frequency shift that will bring 71 into the

filter to 72' and vice-versa there must be a lattice point at T = ±M- 1.

Because y1 and y are the only elements of rn with a spacing in the
1m n

sequence of M - 1, there can only be one lattice point with a delay

= M- 1

and one point with a delay

= (M -1).
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However, the element pairs 7m) 72  and 7M.1, 71 have a sequence spacing

of M - 2, which means that there will be two lattice points at

T=M- 2

and two lattice points at

T = -(M - 2).

By extending this argument to all possible element pairs it can be

seen that for a sequence P with M elements the response lattice willn

have the following property:

If =M - j, there will be exactly j lattice points

with this delay (where j is an integer such that 1< j < M).

tThere is a similar property for the distribution of lattice points as a
function of normalized frequency offset 0 which follows from the above

property and the rotation properties of Section 3.5. If T' VTn I 2

is the complementary delay sequence corresponding to f , then

the response lattice for T' must have the above property. However, the
n

response lattice corresponding to T ' is a 900 rotation of the responsen

lattice corresponding to r , and any property of the response lattice
nIcorresponding to P , and any property of the response lattice in the

direction must then also hold in the direction. Thus it follows

that

If 1 = M - k, there will be exactly k lattice points at

this normalized frequency offset (where k is an integer such that

1< k < M).

Furthermore, since no response resulting from a frequency shifted

subpulse can occur at a delay greater than or equal to the sequence length

it follows that
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I.

If the normalized time delay T is such that

IT M

then the response lattice is identically zero,

There is a corresponding property which limits the extent of the

response lattice in the 0 direction:

If the normalized frequency offset 0 is such that

then the response lattice is identically zero.

These properties imply that the response lattice is bounded in the T and

0 directions by a square with sides of length 2M centered at ' 0,

0 = 0, and that within this square there will be

M + 2(M - 1) + 2(M - 2) + ... + 2 = M2  (3.27)

lattice points with M of them located at T = 0, 0 = 0 with the remain-

ing points satisfying the first two properties.

So far, however, the properties which have been found are not par-

ticularly useful in actually attempting to synthesize a sequence from a

given response lattice.

In order to investigate the synthesis problem more deeply it will be

useful to re-introduce the distance array, [d ij1, discussed in Section

2.4. Each element of the distance array dij was defined as the normal-

ized delay n between y = j and = i + j where the frequency

offset was assumed positive. However, the delay sequence corresponding

to rn'

T i: 2' TM) (3.28)
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is defined by the property that

= k if and only if 7k = j (3.29)
j k

Then, if Yk  and 7k n =i+ j it follows that

- =(k + n) - k = n * (3.30)i+j j

Thus, from tl.e definition of dij, it can be concluded that

d =r -r(3.31)
ij = i+j - Tj

We need one more property of the d array before developing theij

main result of this section. From the definition of the d.. array it

follows that the row sums are given by:

M-1 M-1
Sl I dlj I C -C 1+j - T ] = M - T1>~di=Z~t+.T. TM 1

j=l j=l

M-2 M-2
S2 2j = 2+j- Tj = M + M- 1  2 I + 2

j=l j-1

M-3 M-3

$ 3 d 3j I M- 3+j 'j3 'M + 'M-1 + 'M-2 (T1 +  2 +  3
J=l m=1

M-k M-k M k
S Sk= dc =j Pr - T i T - (332

j=l j=l i:M-k+l i=1
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where

1<k<M- 1

From the above set of equations it can be seen that

Sk = SM-k (3.33)

Thus, if M is an even integer there will be M/2 independent sums; if

M is an odd integer there will be (M - 1)/2 independent sums.

These row sums have a very important physical significance: Sk  is

the sum of the time delays of all lattice points with a frequency offset

of k. B: solving for as many T i as possible in terms of the Sk  it

will be possible to restrict the values which the Ti may have. Despite

the complex appearance of the above set of equations, this solution is

easily obtained by recognizing that

Sk = Sk-l +T M-k+l - k" (3.34)

Thus all of the delays can be expressed as

M-k+l k k k-l ' (3.35)

where for purposes of consistency SO  is defined to be identically zero.

If M is an even integer the above equation yields a set of M/2 inde-

pendent equations in M unknowns; if M is an odd integer then there

will be M-1/2 independent equations in M-1 unknowns (TM+I/2 is not

defined by these equations if M is odd.)

Since r is the delay sequence corresponding to T , an expression
n n

analogous to the above can be written for the row sums, k' of the dis-

tance array d corresponding to T as
ii n
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~-k 7k =k -Sk-" (3.36)7M-k+I k ' -

Using the property that the response matrix corresponding to T isn

identical to the response matrix of r except that it has undergone an

time reversal folowed by a 900 rotation, the row sums Sk  can be in-

terpreted as the sum of the frequency offsets of all lattice points of

the response lattice corresponding to r with a normalized delay of k.

To solve for £ given a response lattice, these two interlocking sets
n

of equations, one relating the frequency offsets at a particular delay

to the 7. and the other relating to the delays at a particular frequency
1

offset to the T., must be solved subject to the following conditions:1

1) T. = k if and only if 7k ; (3.37a)

2) T i T if i P j, i, j = 1, 2, ... , M (3.37b)i j

3) y Y if i j, i, j = 1, 2, ... , M (3.37c)

iii
4) 1 < T. < M (3.37d)

5) 1 < 7i < M .(3.37e)

To illustrate how the results of this section can be used to synthe-

size a sequence from a given response lattice the example below will derive

the sequence corresponding to the response lattice in Fig. 3.13.

Example 3.7.1

The first step in this synthesis should be to check the response

lattice to guarantee that it has the elementary properties presented at

the beginning of this section. By inspecting the response lattice it can

be seen that

,' 1. it is skew-symmetric;

2. it is bounded by a square 12 units by 12 units (that M = 6

follows from the height of the central response);
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3. there are five lattice points with [01 = 1, four with [901 = 2,
etc.;

4. there are five lattice points with 1TJ = 1, four with 1 = 2,
etc.;

5. S = S = 5 + 2 - 1 - 2 - 3 = 1, S2 4 = 5 +2 - 1 - 3 = 2,

and S3 = 4 + 2 + 1 =7; and,3

6. 1 =5 =5+3-1-2-4=1, S =S 3 + 2 '1 1 =5,

and §3 = 4 - 1 - 2 = 1.

Since the response lattice satisfies the necessary conditions, the

synthesis process using the set of simultaneous equations can be continued.

Had any of the above tests failed it could be concluded that a sequence

corresponding to this particular response lattice does not exist.

Writing the equations for the T and yi we obtain:

76 - 71 = 1 ,(3.38a)

75 - 72 = S1  4 ,(3.38b)

74 73 2 = -4 , (3.38c)

6 - =$ =1 , (3.38d)

5 - $2 = S 1 = 1, and (3.38e)

4 -3 3 2 (3.38f)

Since

T4 T3  5

it follows by Eq. (3.37d) that

T4 =6, T =.

By using the relationship in Eq. (3.37a) we obtain that
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76 = 4, Y1 3.
'6

Substituting these values for y6 and 71 into Eq. (3.38a) does not

lead to any contradiction, and so we continue. There are two pairs of

values for 75 and y2 which satisfy Eq. (3.38b)

7 = 6, 2 = 2

or

75 5, 7y = 1

Using the first pair implies that

T6  5, T 2 = 2

Substituting these values into Eqs. (3.38d) and (3.38e) gives

: = ':6 - S1 =  4,

and

t 5 =T 2 S

We can thus conclude that

Y3 = 5, 74 = 1 .

Thereforu one possible sequence which satisfies the constraints is

' 1  = (3, 2, 5, 1, 6, 4)

Had we inetead chosen

5= = 1
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we would Iave obtained

5 =5, T 2

Substituting these values into Eqs. (3.38d) and (3.38e) gives

+ S- S 4
2 5 1 2

and

T6=1 + S1 = 3 ,

which in turn implies that

74 2, y3 = 6 .

Therefore, there is another sequence which satisfies the constraints:

F2 = (3, 1, 6, 2, 5, 4)

But, from Table 3.3 and Fig. 3.10 it can be seen that r1  and r2  have

the same response lattice and that r1  and r2  are the correct sequences.

Since this synthesis examines all y i combinations which satisfy the

constraints it can also be concluded that the only sequences which yield

the response lattice of Fig. 3.13 are r1  and r2.

This chapter has considered the interaction of the response lattice

and the sequence which generates it. The next chapter will discuss error

rates which can be realized with these sequences in channels subject to

rapid fluctuation and the generation of sets of sequences to minimize these

error rates.
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Chapter IV

MODULATION TECHNIQUES AND ERROR RATES FOR
FADING CHANNELS

4.1 Introduction

In this chapter we will analyze techniques suitable for transmitting

digital data, with particular emphasis on techniques suitable for rapidly

varying channels. In this analysis we will compare error rates achieved

by standard modulation techniques such as frequency shift keying (FSK),
phase shift keying (PSK), and differentially coherent phase shift keying

(DPSK) under conditions of "slow" and "fast" fading and the improvement

in error rate provided by diversity. These techniques will then bE com-

pared with the incoherently detected coded frequency shift keyed s(quences

introduced in Chapter III, and the problem of optimizing these sequences

for particular channel characteristics will be discussed in detail. We

will find that the error rates in rapidly fading channels are sequence

dependent and that the response lattice concept introduced in Chapter III

is convenient for representing these dependencies.

4.2 Error Rates for Slow Fading--No Diversity

The effect of a multiplicative time-varying channel on a transmitted

signal u(t) can be compactly represented by complex waveform notation

as

Y(t) = Z(t) U(t) , (4.1)

where Y(t), Z(t), and U(t) are, respectively, the complex envelopes

of the received, channel corrupted waveform, the channel process, and the

transmitted signal

u(t) = Re[U(t) exp [j21cft]) . (4.2)

The statistics of Y(t) are tne fading s'atistics; the rate of change of

Y(t) compared to the length of time coherent summation (for example, in
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a matched filter) of the received waveform is being attempted and the

desired prooability of error will determine the iading rate for which

the fading can be considered "slow."

We will defer until later a more precise definition of slow fading;

however, if the fading is sufficiently slow, then the probability of er-

ror is obtained by averaging the probability of error conditioned on the

received signal strength over the range of signal strengths given by the

channel statistics. If we also assume that the channel statistics are

adequately represented by a Rayleigh distribution with mean signal-to-

noise ratio y then the average probability of error of several common

modulation and detection schemes is easily calculated. It can be shown

j (Schwartz, Bennett, and Stein, 1966) that the conditional probability of

error for common FSK and PSK systems is

a 1- noncoherent FSK
2'

= -- exp(-a7), where (4.3a)

e,7 2 1 PS

a = DPSK

or

t1

coherent FSK

(2) 1
P =- erfc ( , where (4.3b)e,7 2

a 1 , coherent PSK

Averaging these conditional probabilities of error over the assumed

Rayleigh density gives

I~~~ M=) 4~[~ exp(-a7)[ exp(/Z)] dy' ~ +~ (4 .4a)

or

, p(2)= rf(,ex-7 (4.4b)

J 0e \70/J 2\ J1 + l/a 7 0
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Thus we obtain the following average error probabilities:

*1
P 2 noncoherent FSK (4.5a)e 2 +0 '

P= V , coherent FSK (4.5b)

10
P 1 9 Ji coherent PSK (4.5c0

P 1 DPSK (4.5d)
e 2+27PSK0

These error probabilities are plotted in Fig. 4.1. For y > 10 dB the

curves are closely approximated by straight lines of slope minus one.

Therefore, the probability of error for slow Rayleigh fading channels is

proportional to 1/70, in contrast to the exponential decrease with 'Y
00

observed in nonfading channels.

It is apparent from these curves that a small probability of error

requires quite large signal-to-noise ratios. To avoid this large SNR

requirement some type of diversity is usually employed for fading chan-

nels. Several of the more common types of diversity and the effect of

diversity upon error rates will be discussed in the next section.

4.3 Diversity Techniques

We found in Section 4.2 that a low error rate in a Rayleigh fading

channel requires a considerably increased signal-to-noise ratio over that

required by a nonfading channel. Intuitatively, the increased SNR require-

ment reflects the high error rates which occur during fading nulls. To re-

duce the percentage of time that the channel has faded to a certain re-

ceived signal level and thus reduce the error rate, the mean signal-to-

noise ratio must be increased. Alternatively, if a second channel whose
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-des are independent of the fades in the firet can be found, then the

same message can be transmitted over both channels. Since the channels

are independent, the probability that both signals simultaneously fade

below a certain level Js reduced. This same argument can be extended to

any number of diversity channels. However, beyond a certain number of

diveriity channels there is little to be gained by adding more. In fact,

for certain types of energy-sharing diversity (to be explained later)

there is an optimum number of diversity channels; adding more channels

than is optimum will increase the error rate.

There are a large number of techniques which can be employed to

produce channels with approximately independent fading statistics. The

choice of which technique or combination of techniques to use will depend

upon the physical characteristics of the channel, the desired error rate,

and the allowable equipment complexity. However, most diversity tech-

niques can be classified into three basic categories. The first of these

basic classes is space diversity. This technique uses two or more re-

ceiving antennas spaced a number of wavelengths apart. It was found

experimentally that the fading on antennas with a sufficiently large

spacing was nearly decorrelated, apparently because the signals arriving

at the two antennas have traveled over different paths. As long as the

received signals remain decorrelated, a number of receiving antennas may

be used. A variation on this technique is to provide both multiple re-

ceiving and multiple trapamitting antennas. A second, commonly used

method for obtaining diversity called frequency diversity, is to transmit

at several widely spaced freauencies. As long as the frequency spacing

is sufficiently large, the signal received on each of these frequencies

will fade independently. A third technique for providing diversity is

to repeat a message several times, on the assumption that if the spacing

between messages is sufficiently long, then the channel fading level will

be independent from message to message. This is a simple example of time-

diversity.

Many of the more exotic diversity techniques proposed or in use are

combinations or variations of these three elementary methods. For example,

the Rake system (Price and Green (1958]) transmits a signal with sufficient
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bandwidth to resolve the difference in arrival time at the receiver of

signals which have traversed paths of different length. These components,

since they have traveled over different paths, can be expected to fade in-

dependently. Thus the Rake system uses a form of space diversity where the

diversity channels are separated on the basis of arrival time rather than

spatial location.

In HF communications the bandwidth over which the fading is corre-

lated may be less than the information bandwidth; thus the two sidebands

of a double-sideband AM signal are sufficiently widely spaced to provide

frequency diversity. Another similar variation is to amplitude modulate

a carrier with a number of tone bursts. If the frequency separation of

these tone bursts is comparable to the fading correlation bandwidth, then

the fading of each modulating tone will be approximately uncorrelated,

providing frequency diversity. By sending the tone bursts sequentially

rather than simultaneously and recombining in the receiver it is possible

to realize time diversity as well as frequency diversity.

Coding, particularly coding for burst errors, is a nontrivial form

of time-diversity. By knowing or measuring the fading statistics of the

channel, it is possible to distribute the information content of the mes-

sage so that with high probability enough of the encoded bits can be cor-

rectly received to permit correct decoding of the message.

In any particular system the actual technique used to obtain diver-

sity has no effect on error rcites provided the different techniques yield

the same mean signal-to-noise ratio. Thus, error rates as a function of

the number of independent diversity branches can be calculated without

having to consider what type of diversity is actually being employed. In

the next section we will derive error rates for fluctuating channels as a

function of the number of diversity branches.

4.4 Error Rates for Arbitrary Fading Rate and Order of Diversity-Binary

Alphabet

If the rate at which the channel process fluctuates approaches the

data bandwidth the analysis of Section 4.2 is no longer valid. By as-

suming that the received time-varying signal, including additive thermal
L,
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noise, is representable as a complex, nonstationary gaussian process,

Bello and Nelin (1962J derived an expression relating the probability of

error for a binary communication system to the fading rate and order of

diversity. They assume that the decision as to which of the two possible

messages was actually sent is mde by a threshold decision on a random

variable q, where, in general,

q = [ajWkI 2 + bjX 1j 2 + cW*X. + c*W X ] (4.6)

k=l

and Wk  and X are the complex outputs of filters in the kth diversity

branch tuned to the mark and space symbols, respectively.

iy choosing a, b, and c appropriately the quadratic form for q

given above can represent coherent, differentially coherent, and inco-

herent detection, as well as either pre-detection or post-detection com-

bining. However, recalling the discussion in Chapter II relating to the

difficulty of derivin. a phase reference in a rapidly fluctuating channel,

we will confine the discussion in this section to incoherent detection and

post-detection combining of the diversity channels. For incoherent detec-

tion a = 1, b = -1, and c = 0. With these restrictions the decision

variable q becomes

L [ W 12 
- Xk,2]

k=l

A block diagram for this incoherent matched filter receiver is shown in

Fig. 4.2.

Errors may be made in two ways: either q may be positive given

that a "space" symbol was sent or q may be negative given that a "mark"

symbol was sent. These two probabilities will be represented by p0  and

P., respectively. Bello and Nelin show that the probability of these

two types of errors is
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PO ( q > O1space) = B m=O (2 + )m (4.7)

and

:+ '",,:o f-" + m)+ + 0.' 3 "
:1 p ( < Ojmark) (2= ~ = L ' ~ ~ (4.8)

For a slowly fluctuating channel with signals of equal energy P =PO;

however, rapidly fluctuating channels may have p1 g p0  unless the fading

spectrum is symmetrical and the mark and space waveforms have identical

envelopes. In these expressions represents a generalized diversity

branch signal-to-noise ratio given by

(2 ml-OO
11 MOO) (4.9)

2~ +i4 i i i 2 i o

where i = 1 for "mark" transmitted, i = 0 for "space" transmitted,

i 2 i i 2

1. = IWk2  m Wk-b , MO x (4.10)

and all other moments such as lw_*_ _ Xx_1l and 1-N2 I are assumed

equal to zero. These restrictions mean that each diversity branch is in-

dependent, since the outputs of the filters are assumed gaussian. The

general form of the expression for the moments is

STi f i
R(T) (r U) +4NoE , (4.11)
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where N is the additive noise density, S i(t) is the transmitted symbol,

R(T) = *(t ) Z (t + T) , (4.12)
k 1 ki1

ir(T) O S*(t) Sr(t) Si (t + T) S*(t + T) dt , (4.13)

andiT
E = S*(t) S(t) dt . (4.14)•rs 0 6 r

Thus the moments depend on the channel fading process Zk(t) , the form
and energy of the "mark" and "space" symbols, the additive noise power,

and which of the two possible symbols S or S1  (corresponding to i=O

or i=1) is being transmitted.

Inspection of the expressions for PO and p1  shows that p0 = P1

if

1 - + . (4.15)

Thus p0  can be calculated by first computing 0 and either substitu-

ting directly into the expression for p0  or by setting

(4.16)
1

and then this quantity into the expression for p1.

Since the expressions for probability of error are functions of both

the transmitter waveform as well as the channel fading statistics it will
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be necessary to assume a specific form for these quantities. Because

the sequences discussed in Chapter III are a more general form of binary

FSK it will be useful to analyze the binary FSK system first. For a

binary FSK system the "mark" and "space" waveforms can be represented as:

1[ T
Slt 2 = E/ exp 1i R t ; 4.17a)

where E is the waveform energy, T is the waveform duration, and n

is the frequency spacing in multiples of 1/T.

Bello and Nelin analyze two possible forms for R(T), the channel

fading autocorrelation function: gaussian and (.. ,-nential. For the low

data rate systems (including long pulse radar) considered in Chapter II

the exponential fading autocorrelation function should be a reasonable

model since one of the principal sources of system instability is the in-

stability of oscillators and random changes in the phase path length.

The processes which cause these instabilities can be r.odeled as a Weiner

process (neglecting periodic fluctuations such as might be caused by os-

cillator power supply ripple), which has an autocorrelation of the form

R(T) = exp[-allr] . (4.18)

Thus it seems reasonable to model to channel fading by a gaussian process

with an autocorrelation

R(T) = e , (4.19)

where B is the 3 dB bandwidth of the "single-pole" spectrum correspond-

ing to this autocorrelation function.

0
Calculating the m for an incoherent FSK system and this particu-• Caculaing he rs

lar R() gives
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Mo 1E + - (4.20a)0 b (2nb)2 2P

M 0  8E c2e2 2 +- 1 (4.20b)
1L(2) 2 (b2 + n2 )b

Ml 0 8E 2 1 21b U e- 21r
(20) (b2 + n2 b2 + n2 () +

(4.20c)

where p is the diversity channel SNR and

b = BT

For particular values of b, n, and p these expressions permit

the calculation of the moments. These moments are substituted into

Eq. (4.9) to obtain 301 which allows p0  to be calculated from

Eq. (4.16) and (4.8). It is also possible to calculate p0  directly

from Eq. (4.7).

Since the quantity ' can be interpreted as an equivalent signal-

to-noise ratio which includes the effect of rapid fading on the channel

signal-to-noise ratio under slow, Rayleigh fading, by taking the ratio

of to the slow fading SNR it is possible to nlot the effective de-

gradation as shown in Fig. 4.3(a) and Fig. 4.3(b). It can be seen from

these curves that the degradation is an increasing function of diversity

branch SNR and normalized bandwidth of the cnannel fading process and a

decreasing function of the channel spacing. For sufficiently rapid fading

the effective diversity branch SNR can decrease enough to cause a system

to be unusable because of the high error rate.

There are two sources for this degradation: first, the channel

spreads some of the signal energy outside the bandpass of the matched fil-

ter, and, second, energy from the "mark" waveform is spread into the fil-

ter for the "space" waveform, and vice versa. The first effect could be
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overcome simply by increasing the received signal energy; however, in-

creasing the signal energy also increases the amount of energy spread

into the filter for the other symbol, preventing, beyond a certain point,

any further improvement in error performance.

Using the SNR degradation it is possible to plot the binary error

rate as a function of signal-to-noise ratio, number of diversity chan-

nels, and the "spread factor" b under the assumption that the total

energy/symbol is constant and that the symbol energy is equally divided

among the diversity channels. Therefore, because the energy is divided

in this manner an increase in the number of diversity channels results in

a proportionate decrease in the symbol energy received in each diversity

channel. Without this assumption it would be possible to increase the

energy/symbol without bound by increasing the number of diversity chan-

nels. This restriction is applicable to systems using time and frequency

diversity as well as to systems deriving angle diversity from rapidly

scanned antennas or space diversity from multiple transmitter antennas.

Figures 4.4(a)-4.4(c) show the probability of error under the as-

sumption of constant energy/symbol for a channel having an exponential

fading correlation function with the normalized fading bandwidth b as

a parameter. These curves have several interesting properties. For a

particular probability of error there is an optimum number of diversity

channels which achieve this probability of error with minimum total en-

ergy, and the minimum occurs for a diversity channel SNR of about 5 dB.

This characteristic of energy-sharing diversity with post-detection com-

bining was first noted by Pierce [Pierce, 1958] for the case of channels

with slow fading. In addition, inspection of the curves presented here

shows that the optimum number of diversity channels for a particular

total SNR is insensitive to the fading bandwidth. As b increases,

curves representing low orders of diversity asymptotically approach lines

of constant probability of error. Thus for systems with low order diver-

sity it may be impossible to obtain a desired probability of error re-

gardless of how much transmitter power is available. Actually, all of

the curves show this saturation effect, but for high order diversity it

occurs for error rates that are much lower than usually required.
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However, if in contrast with the above discussion the normalized

fading bandwidth is a function of the number of diversity channels, then

a diversity channel SNR of approximately 5 dB is not necessarily optimum.

The next section will discuss the effect of this modification and how it

applies to the coded frequency sequences discussed in Chapter III.

4.5 Optimization of Diversity Channel Power and Coded Frequency

sequences

In deriving the results of Section 4.4 it was assumed that the

normalized fading bandwidth in each diversity channel was a constant in-

dependent of the number of diversity channels. This assumption would

apply to a system where the available power was equally divided among

the diversity channels but the duration of transmission remair d con-

stant. If, instead, the total transmitter power is allotted to each di-

versity channel for a fraction l/M of the symbol duration a much lower

probability of error can be attained for the same total energy in a rap-

idly fading channel. This benefit obtains because decreasing the dura-

tion of the signals in each diversity channel decreases the effective

channel fluctuation bandwidth. Thus increasing the number of diversity

channels increases the number of independently fluctuating signal paths

and decreases the effective fading bandwidth. An example of a system

using this second alternative would be a system with M possible trans-

mitter frequencies which transmits at a frequency f1  for T/M sec, then

steps to f2 for T/M sec, then to f3 for T/M sec, and continues until

all M frequencies have been used. Such a system would use the time and

frequency spacing of the diversity channel signals to obtain independently

fading paths. The benefit of shortening the diversity channel signals is

illustrated in Fig. 4.5(a),(b),(c) which give the probability of error for

a rapidly fading Rayleigh channel as a function of BT and diversity chan-

nel SNR (which is the total SNR divided by the number of diversity chanl-

nels). The reab'n these curves decrease so rapidly as the number of

diversity channels increases is that the effective fluctuation bandwidth

becomes

beff = BT/M. (4.21)
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However, increasing the number of diversity channels beyond the number

corresponding to the minima of the curves causes the square-law detection

loss to increase faster than the gain resulting from the increase in di-

versity and the decrease in fluctuation brndwidth, which causes the error

rate to increase again. Fortunately, the minima are sufficiently broad

that system performance is not critically dependent on the actual diver-

sity channel SNR.

Inspection of the curves shows that as b increases the minimum of

the curve corresponding to this b shifts to a lower value of diversity

channel SNR. Thus for a slowly varying channel the optimum diversity

channel SNR is about 5 dB, but for b = 0.64 the optimum SNR is about

3 dB and for b = 2.56 the optimum SNR is only 0 dB. Examination of the

curves shows that the channel SNR at which these minima occur depends

primarily on b and is nearly independent of the total SNR.

From the viewpoint of minimizing system sensitivity to changes in

the fluctuation bandwidth, the system should be designed to operate with

a diversity channel SNR of about 3 dB. This choice of SNR permits the

fluctuation bandwidth to change over a wide range without greatly affec-

ting the probability of error.

These conclusions about optimum operating points also apply to radar

detection of rapidly fluctuating targets; for maximum detectability con-

sistent with minimizing sensitivity to fluctuations with unknown rates

the pulse length and pulse duration should be adjusted to yield a single-

pulse SNR of approximately 3 dB.

These results are directly applicable to calculation of error rates

for systems using the CFSK sequences discussed in Chapter III. As long

as the fluctuations of each of the M subpulses are approximately L-

dependent as a result of the frequency spacing, time spacing, or both,

then the incoherent summation of the outputs of the filters matched to

each M frequency shifted subpulses gives, in effect, the equivalent of

M diversity channels. If the fluctuations of the subpulses are not in-

dependent then the dependencies result in an effective lower order of di-

versity; however, there must be a high correlation among the diversity

channel fading before the diversity improvement is seriously affected.
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Turin (1962] calculated the effect of diversity channel correlation for

channels with "slow" fading under the assumption that the fading correla-

tion bctween diversity channels was an exponential function of the channel

spacing. This model is consistent with the assumption of an exponential

fading autocorrelation function. He showed that even for high correla-

tions considerable improvement can still be obtained; for example, a cor-

relation coefficient Irl of 0.70 results in a 1.8 dB loss of SNR for

10 and P = 10 -
. For the assumed R( ) the normalized fading band-e

width corresponding to this correlation coefficient is

b = BT = X Ln = 0.057 (4.22)

Thus a small fluctuation bandwidth is sufficient to decorrelate the sub-
pulses enough that nearly the full diversity improvement is obtained.

In addition, if the system is operating with approximately the optimum

number of diversity channels most of the reduction in error rate is the

result of the reduction in b rather than the large number of diversity

channels. Therefore, a change in channel statistics causing the subpulse-

to-subpulse correlation to increase, decreasing the effective number of

diversity channels, will be offset by the decrease in fading bandwidth.

Because of this tradeoff the actual effective SNR degradation will be

less than that given by Turin's analysis for channels with "slow" fading,

and the error rates for CFSK sequences are not critically dependent on

the assumption that the subpulses fade independently.

When calculating the probability of error, however, the change in

frequency spacing between the "mark" and "space" sequences must be in-

cluded. For example if we choose the sequence

r,1 = 1,2,3,4,5,63

to be the "mark" sequence and

r 2 = (6,5,4,3,2,1)
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to be the "space" sequence then the normalized frequency spacing between

r1I and r 2  is not constant. Letting n i be the frequency spacing be-

tween the ith subpulse of r1  and r2  gives,!

1 2

n1 = -5 , n2 =3 , n3 =1,

n 4 = 1 1 n5 =3 y 6 =5.

Thus our assumption of constant frequency spacing between the "mark" and

"space" diversity channels is violated. However, a normalized channel

spacing o 1 represents the worst case. Since frequeny calculations

assumed tht the error rates which result are upper bounds on

the error rates for particular choices of sequences for the "mark" and

"space" symbols. The curve for b=0 is a lower bound. For most pur-

poses these upper bounds will be adequate since the number of diversity

channels required for minimum probability of error will result in a low

normalized fading bandwidth. By referring to Fig. 5.2(a) and (b) it can

be seen that for b < 0.1 and a diversity channel SNR of 5 dB or smaller

there is less than a 1 dB difference in channel SNR degradation between

n = 1 and n = 10 (which represents essentially infinite symbol spacing).

Thus at the error minima the probability of error calculated for n=l

will be a good approximation to the actual, sequence dependent, error

probabilities.

A third assumption made in deriving these error probabilities is

that the "mark" and "space" symbols are orthogonal. For the sequences

considered in Chapter III with frequency spacing constrained to multiples

of l/T the orthogonality assumption is satisfied by any pair of se-

quences for which

n 0 , i =

However, this condition for orthogonality is only valid as long as

there are no mean frequency shifts. If there are uncompensated mean fre-

quency shifts then sequences which are orthogonal under zero frequency
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shift can become highly correlated. The next section will discuss this

problem.

4.6 Selection of Orthogonal Sequences

As long as the receiver is exactly tuned to the transmitted sequence

the condition discussed at the end of Section 4.5 is sufficient to guar-

antee that the sequences are orthogonal, thereby minimizing the cross-

talk between the "mark" and "space" receivers. However, if there is un-

compensated mean doppler shift or oscillator drift that represents a sub-

stantial fraction of the subpulse bandwidth M/T then there may be con-

siderable crosstalk even in the absence of rapid fading.

The amount of signal energy which is received in the "space" receiver

when a "mark" is transmitted and frequency shifted by an amount

0 f (4.23)

is given by the cross-ambiguity function of the "mark" and "space" symbols.

To simplify the analysis it will b,7 convenient to define a cross-response

lattice analogous to the responsa lattlrt represcntption for the ambiguity

function. Thus two sequences r and T2 for which the cross-response

lattice is desired must first be 'ransformed into their corresponding ue-

lay sequences T and T2 . Then the amount of normelized frequeuicy shift

before a particular subpulse of r1 aliases as a subpulse of r2  is

given by

0 ij = Ti,1 TJ, 2  (4.24)

where i - j is the normalized time delay at which the aliased subpulse

is received.

For

*I = (1,2,3,4,5,6)
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and

r2 = (6,5,4,3,2,1)

the ( l) array is easily calculated to be

-5 -4 -3 -2 -1 0

-4 -3 -2 -1 0 1

-3 -2 -1 0 1 2
1 ij} rl or2 -2 -1 (4.25)

-1 0 1 2 3 4

0 1 2 3 4 5

Ideally, the cross-response lattice derived from this array should have

no lattice points with magnitude greater than one 1-n insure minimum

aliased signal power for every frequency shift and delay. Inspection of

the particular (Jj ) calculated above shows that the cross-response lat-

tice corresponding to r1 and r2  does, in fact, not have any lattice

point with a magnitude greater than one. However, the lattice points

whose location is of primary concern are the ones for which i = J, since

they represent aliased energy occuring simultaneously with the transmitted

symbol. This aliased energy affects the probability of error in the same

way as spreading of the symbol energy by a fluctuating channel. Assuming

a "mark" is transmitted the aliasing which results from mistuning of the

receiver adds to the thermal noise in the "space" receiver. In fact, as-

suming negligible thermal noise, the ratio of symbol energy to aliased
energy will only be

E - M (4.26)
E Pr/M -
a

when

0 0 iJ , J = 1, 2, ... , M
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Thus for short codes the self-noise caused by aliasing can dominate the

thermal noise, even though the codes have been selected to give a low

cross-ambiguity function. Consequently, the "mark" and "space" symbols

should be chosen to place the lattice points on the Tr = 0 axis (which

correspond to aliased energy present at the same time as the signal) at

as large a as possible. Of way of constructing a pair of sequences

with maximum distance to the points on the Tr = 0 axis (although not

with the uniform cross-ambiguity property) is to choose an arbitrary se-

quence of length M (M even) and add M/2 to those elements of the se-

quence such that y. M/2 or subtract M/2 from elements such that

r.i > M/2. This procedure results in a new sequence which is not only

l1

orthogonal but the first lattice points on the T = 0 axis occur for

1,01 = M/2. This procedure will maintain the portion of the T = 0 axis

for which 1lo1 « M/2 free of cross-ambiguity responses, and will mini-

mize aliasing for small amounts of uncompensated frequency offset in the

receiver.

As M increases the frequency offset LAf which can be considered

small also increases since the condition which must be satisfied is

0=- M «< (4.27)

T 2+

which is one more reason that M should be made as large as possible

consistent with a low error rate.

In the next section the possibility of using more than two transmit-

ter symbols will be considered.

4.7 M-ary Source Alphabets

In previous sections only binary source alphabets were considered.

However, by increasing the number of orthogonal sequences in the source

alphabet to M the number of binary bits encoded on each sequence will

also increase to

log o bits (4.28)
lt2 M sequence
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Thus by using larger source alphabets more efficient use may be made of

the channel. The penalty incurred by using larger source alphabets is

a larger required sequence energy to maintain the same sequence error

rate. Also, the mutual interference resulting from receiver mistuning

will be increased since more sequences are snaring the same time-frequency

space. However, since more bits are encoded on each sequence the energy

per bit necessary to maintain a specified bit error rate will decrease.

The larger number of source symbols also permits, instead of decreasing

to energy per bit to hold the bit error rate constant, increasing the se-

quence duration by log 2 M, which maintains the original bit rate and,

for a peak power limited system, increases the received sequence energy

by log 2 M. This increase in sequence SNR will permit a corresponding

increase in M which results in diversity improvement (as long as the

diversity channel correlation remains small) and a reduction in effective
fluctuation bandwidth. For a low data rate system these factors can pro-

vide a reduction of bit error rate In addition to that provided, by the

larger source alphabet.

In order to analyze the effect of M-ary encoding further, it will

be useful to derive an upper bound on the encoded bit error probability

in terms ox the binary error probability derived previously. If the out-

putj of each receiver matched to a particular sequence ri is given by

Bit then the probability that the receiver decides incorrectly that

rip i ; M, was sent when in fact rM  is the transmitted sequence is

given by the probability of the union of events that Bi > But i M,

i.e.,

P Pr{U (Bi > B .(4.29)

By the union bound

M-1
PeM = Pr{Bi > B M (4.30)

so
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Since the symbol alphabet is symmetric

PrIBi > B (4.31)

is just the binary probability of error P . Thus, the M-ary alphabete

symbol error probability is bounded above by

P < (M - 1) P , (4.32)
e,M - e

and for small sequence error probabilities this bound becomes tight.

The sequence error probability can be related to the encoded bit error

probability by recognizing that if a sequence is incorrectly received the

average probability of error for the bits in the sequence is

Flog Ml
1 2 2 (4.33)

2 2log M

Using this expression and Eq. (4.32) the probability that an encoded bit

is received in error is bounded by

log M
(M_) r  21g2 

log M e (4.34)

2 2-_1J

For large M the bit error probability is approximated by

M- 1 (4.35)
b,M 2 e

As an example of the benefit obtained by using large source alpha-

bets, a sixteen symbol alphabet will be compared with the error probabil-

ity obtained with b:iary encoding.
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Assume that the received SNR is 13 dB and that b = 0.64. From

Fig. 5.4(a) the probability of error for a binary alphabet using sequences
-2

of length 16 is 2 X 10 . If, instead, the source alphabet is increased

to sixteen sym )1s, the sequence SNR can be increased to 19 dB without de-

creasing the transmission rate since log2 16 = 4, which allows the se-

quence duration to be increased by a factor of four. Using Fig. 5.4(c)

with a diversity channel SNR of

19 -l0 log10 16 = 5 dB

and the b = 2.56 curve (because the duration of each subpulse is also
-5

increased by a factor of four) the new sequence error rate is 
7 X 10

and thus the bit error probability is bounded by

15 -5 -4P <-x x10 =5.25x 10
b,M -2

Comparing this bound with the error rate for the binary alphabet shows

that the bit error rate has decreased from 2 x 10- 2  to 5.25 x 10
- 4

with no reduction in information rate.

The next section will consider the construction of orthogonal

alphabets.

4.8 Constructing Sets of Orthogonal Sequences

In discussing the advantages of using source alphabets larger than

binary it was assumed that, in fact, these large source alphabets of or-

thogonal sequences could be constructed. In this section a simple alor-

ithm for constructing sets of up to M sequences will be derived, and

iT will be shown that not only are the members of this set orthogonal

but that the cross-response lattice points on the 1 = 0 axis are uni-

formly distributed.

Consider the set of sequences (for which M = 6)

f1,2,3,4,5,61
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r1 (1, 2,3,4,5,6)

r2 = 2,4,6,l,3,51

r3 = (3,6,2,5,1,4)

i £4 = (4,1,5,2,6,3)

S5= (5,3,1,6,4,2)

F = (6,5,4,3,2,1)

Insnection of this set shows that is obtained from rI  by modulo

M+1 multiplication by i and, therefore, every sequence can be derived

by modulo M+1 mul"plication from any other. A sequence length of six

is only for illustracive purposes; M may be any integer provided that

M+1 is prime. Were M+l not prime then some of the r would have
i

members equal to zero, which is not allowable.

It is easily verified *hat all of the r. are orthogonal. Suppose
1

that F is obtained from F> by modulo M+1 multiplication by the

integer Lk . Then, the elements of rk are given by

Yi,k = [yij X Lkl.M+ (4.36)

By the definition of modulo M+1 multiplication 7 ik can also be

written

7i,k = (7i3 x Lk ) - Qi(M+l) (4.37)

where Q. is an integer selected to satisfy the equality. But the se-
1

quences will be orthogonal if
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7 i,k - 7i,j 0. (4.38)

Subtracting y, from the expression for y implies that
i~j i,k

7i,k - 7 i,j = 7i j (4 - 1) - Q I(M+1) . (4.39)

The only way for this expression to equal zero is if

S (M+) . (4.40)

Since y' must be an integer and since M I is prime the only values
of 2' which solve this expression are integer multiples of M+1. But
the 7i,j may only have integer values between 1 and M and, therefore,
there is no allowable yi,j which solves the expression. Thus all of the
r are orthogonal.

Using a similar argument it can be shown that the distances

Yi,k - i j =n. (4.41)

and

7m,k - m'j = M (4.42)

are unique. Recalling the definition of the cross-response lattice, this
uniqueness means that there will be at most one lattice point located at
each integral multiple of M/T. Since by the previous discussion ni  is

given by

n= 7i,k - 7i = (k - 1) - Qi(M+1) (4.43)
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then,

m 7 m,k -m,J inJ ( k - 1) Qm(M+I) (4.44)

Using the above expressions

ni -n = (L - 1)(i, - m j ) + (M+1)(Qm - Qi) * (4.45)

if

n. -n =0,

then

- 7mj - Lk- (M+l) . (4.46)

But, the above expression can only be satisfied if y' - 7 is an

integer multiple of M+1. Since y1,j and ym,j  are distinct members

of the sequence r there will be no solution. Thus it follows that

n n (0 , (4.47)

which is the desired property.

Since every possible sequence of length M can be obtained from the

sequence

I= fl,2,3,...,M)

by interchauging the elements of r. and since the conditions for ortho-

gonality and low cross-response were independent of sequence order, it

follows that any sequence will yield a set of M orthogonal sequences
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with low cross-response under modulo M + 1 multiplication. For M + 1

not a prime number the maximum number of orthogonal sequences which may

be constructed in this manner is equal to the number of positive integers

less than or equal to M which are relatively prime to M + 1.

Since each sequence may be used to construct a set of M (for M+1

prime) orthogonal sequences, there are (M - 1)! distinct orthogonal

sets which can be constructed by this method.

There are other ways in which sets of orthogonal sequences may be

generated, but in general these sets will not have a desirable cross-

response. As an example of one of these methods, let

r =

and add any positive integer < M - 1 to the elements where, if the add-

ition results in an element > M + 1, the value of that element will be

defined to be its value taken modulo M. Although M orthogonal sequences

result, the cross-response for

r2 = (2,3,...,M,l)

has a value of M - 1 located at T = 0, 0 = l/T, which would result in

a large sensitivity to mistuning.

This discussion concludes Chapter IV. The emphasis in Chapter V will

be on implementation of the CFSK receiver and acquisition and coding

techniques.
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Chapter V

RECEIVER IMPLEMENTATION, CODING, AND

FREQUENCY ACQUISITION

5.1 Implementation of the CFSK Receiver

The general form of the CFSK receiver is shown in Fig. 5-1. The

filters in each branch are matched to a particular subpulse of the coded

frequency sequence. The filters are followed by square-law detectors

which perform the incoherent detection. After each of the square-law

detectors is a series of delays which serve to delay each subpulse to

bring it into correct time alignment with the other subpulses of the

same sequence. If the sequences are orthogonal, when rP is transmitted

only the delayed filter output sum B. will have the subpulses aligned.3

The remaining B. will have the subpulses dispersed in time according to
1

the cross-ambiguity function of B. and B.. Then the summed delayed
3 1

filter outputs are compared at time t = T and the largest assumed to

be the transmitted sequence.

Functionally, the receiver has five types of components: subpulse

filters, square-law detectors, delay lines, summing elements, and deci-

sion logic which decides which sequence was most likely to have been

transmitted. All of these functions may be implemented either with an-

alog elements or digitally; however, in the case of the delay lines a

digital implementation appears to be the only feasible alternative.

One possible hybrid receiver uses analog filters and square-law

detectors followed by an A-D converter which permits the remainder of the

receiver to be implemented digitally. For sequences with total duration

of one second and M on the order of ten to one-hundred analog filters

with center frequencies of up to 10 kHz and 100 Hz bandwidth would be

required. Although stable analog filters with the required bandwidth can

be constructed, such a receiver would not allow changes in the number of

frequencies and sequence duration without considerable modification.

An entirely digital receiver has several advantages over the hybrid

receiver: completely stable, high-Q filters may be synthesized, the
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nonlinear detectors are easily implemented and stable, accurate time

delays on the order of seconds are realizable. In addition, only soft-

ware changes are necessary to permit detection of sequences with differ-

ent coding, number of frequencies, and duration.

To enable as low a sample rate as possible the received data would

be translated to a near lowpass spectrum. This low frequency data would

be sampled and quantized in an A-D converter and stored. Segments of

this data one subpulse in duration are Fourier transformed to obtain the

power spectrum at each of the possible subpulse frequencies. The power

at particular frequencies and delays is then added to align the subpulses

of each of the possible sequences in time. These sums are then compared

and the largest assumed to correspond to the transmitted sequence. Since

the total bandwidth will usually be less than several kHz, it will be

possible to perform these computations in real time.

Because of the inherent flexibility of the digital implementation it

appears that a completely digital receiver rather than a hybrid is

preferred.

5.2 Frequency Acquisition of CFSK Sequences

Since the sequence bandwidth can be a small fraction of the range of

frequency uncertainty resulting from long-term oscillator drift and un-

known doppler shift, before data can be received the receiver must be cor-

rectly tuned.

The simplest procedure is to tune the receiver in steps of approxi-

mately M/2T across the range of frequency uncertainty. Since the dura-

tion of each sequence is T a range of frequency uncertainty 6 F may be

covered in

AT = (2T/M)(TAf) (5.1)

with a high probability of detection.

A narrowband transmission of duration 1/T and equal energy would

require approximately M times longer for acquisition since the band-

width is a factor of M less than the CFSK sequences.
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For certain sequences acquisition can be even more rapid. hectlling

the incoherent channel response function for a linear frequency progres-

sion, it is apparent that for J1T < U4/2 the SNR loss from mistuning

will be less than 3 dB, which permits the tuning to be incremented in

steps of M /4T instead of M/2T. Since the total SNR is assumed ad--3

equate to obtain a P of 10 or better, even witb a 3 dB loss from

misturning the detection and false alarm probabilities will be satisfac-

tory. With these assumption the acquisition time can be reduced to

AT = 4T 2f/M 2 . (5.2)

Thus for large M and linear frequency sequences the acquisition time

can be reduced by a factor of M2 /2 from the time required by narrow-

band transmiqsions.

This ability to detect the presence of signRl energy even though

the receiver is severely mistuned could considerably reduce the amount of

computation required for the detection of weak echoes such as encountered

in radar astronomy because of the reduction in the number of doppler chan-

nels which must be searched.

The next section will consider the advantages obtained with simple

error correcting codes.

5.3 Coding for Reliable Transmission in M-ary Systems

For certain purposes the error rates obtained with CFSK sequences

will not be sufficiently small and error detecting and possibly error

correcting will be required. Because incorrect reception of an M-ary

symbol results in approximately one-half of the bits associated with that

particular symbol being in error, standard serial encoding would require

very long code blocks to be sent for efficient transmission, particularly

for large M.

An alternative is longitudinal coding where the binary symbols to

be encoded as an M-ary symbol (where log 2 M is an integer) is to ar-

range the binary data to be transmitted in an array, with the last p
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rows being error detecting and correcting codes, and whose rows, except

for the last p are the binary data to be transmitted.

Then the rows are sequentially encoded as one of the M sequences.

The error detecting and correcting codes are also encoded and transmit-

ted. At the receiver the reverse column by column decoding is performed

and any needed corrections performed.

Suppose that P data sequences followed by p error correcting

sequences are sent. Then, the information rate drops to a fraction

P (5.3)
p+P

or its original value.

However, errors will cluster in a particular M bit word as a re-

sult of a sequence error. Since it requires 2 bits to correct a single

error, an incorrect sequence can be corrected with 2 redundant sequences.

Thus to make an uncorrectable error 2 sequences out of the P + p se-

quences must be in error.

Assuming the sequence errors to be independent with probability

P gives

Pr{N errors in P + p sequences) = Pe (,M - Pe) P + P - N

(5.4)

The probability of 2 errors is then

1 2
- (P + p)(p + P - 1) P M(l - P eM) p + P- 2 (5.5)

which, if p + P >> 1 and P << 1, becomes
e,M

1 2

Pr(2 errors in P + p sequences) - (p + p)2P . (5.6)
2 e M
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This expression shows that if

P p (5.7)

e,M

then the probability of an uncorrectable error is large and the error

control codes are useless. As long as P is sufficiently small, how-

ever, error control coding can substantially reduce the error rate as

the following example will show.

Suppose that P = 10- 4  and p + P = 12, then two sequencer out
eppM

of the p + P will be detected incorrectly with a probability of
-7

6.6 x 10 . Since there are log 2 M bits encoded on each sequence and

two sequence errors imply that on the average log2 M bit errors will

result out of the (p + P) log2M bits in the code block, the bit error

rate becomes (assuming more than two sequence errors to have low prob-

ability)

Pr[ 2 sequences in error) log 2 M

b (p + P) log 2 M (5.8)
P p2

2 e ' P < < p  (5.9)
2 e ,M' p P

This bit error rate is independent of M for M >> 1.

For the values used in the previous example the bit error rate is

approximately 5 X 10-
. The bit error probability without error control

is

MP b (5.10)

-3
which would result, for M =16, in P = 1.6 X 10-3  Thus even rela-

b
tively simple error control can give quite considerable improvement in

error rates.
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The disadvantage of this type of error control is that a substan-

tial amount of storage is required both at the transmitter and receiver.

However, since reliable, large-scale memories with low power consumption

using MOS techniques are available, providing the required storage should

not be a major problem.

B
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Chapter VI

RECOMflNDATIONS FOR FURTHER INVESTIGATION

In the previous chapters, we have discussed the analysis and appli-

cations of cided frequency shift keyed (CFSK) sequences, with emphasis

on their use in fluctuating channels. However, in the analysis we as-

sumed that tht frequency step spacing was equal to the inverse of the

subpulse duration. A generalization to permit representation by the re-

sponse lattice of sequences with non-harmonic spacing and possibly non-

contiguous subpulses would have wide applications.

Another subject for further consideration would be the conditions

for synthesizing long sequences with certain proparties (for example, the

"thumbtack" property) by combining shorter sequences.

In calculating the bounds on the -robability of error for CFSK se-

quences, the effects of subpulse correlation were neglected as was the

dependence of the sequence error probability on the actual form of the

sequence. A more exact expression would be valuable in assessing the

relative performance of different sequences.

Finally, experimental verification for these results either in the

laboratory or under field conditions which permits realistic assessment

should be performed. If these experiments verify the theoretical results

obtained in this investigation, a more severe test such as use in a solar

radar would confirm their utility.
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